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Abstract. Using a technique based on self-similar mndom processes, we consmct unitary 
representations of the g o u p  of diffwmorphisms of B describing continuum quantum systems 
with infinitely many degrees of freedom. These wn describe systems undergoing a phase 
change, from rarefied to condensed, at the critical value of a corretvion The method 
offers promise for generalization lo higher spatial dimensions, and for application to theories of 
extended quantum objects. 

This letter describes a new class of quantum models with a countable infinity of degrees 
of freedom. A paramehized family of such models, regarded as describing a quantized gas 
of point particles in onedimensional space, shows a phase transition at the critical value of 
the correlation parameter K .  

Our construction is based on an approach to quantum theory that has already produced 
many interesting results. Quantum systems on a spatial manifold M are described by unitary 
representations of an infinite-dimensional group Diff(M). the group of diffeomorphisms 
(i.e. smooth, invertible mappings) of M under composition [l]. This method, derived 
from local current algebra, led to a mathematically rigorous prediction of intermediate 
particle statistics (for M = RZ) by Goldin et ai, as had been conjectured by Leinaas 
and Myrheim; such particles were later termed 'anyons' by Wilczek. This approach 
yielded important fundamental physical and mathematical properties of anyons-the shifted 
angular momentum and energy spectra, the connection with configuration-space topology, 
the relation to the physics of a charged particle circling a region of magnetic flux, and 
the role of the braid group in anyon statistics 121. Quantized vortex configurations in 
ideal, incompressible fluids were also obtained from representations of groups of (area- 
and volumepreserving) diffeomorphisms of R2 and R3, leading to unexpected physical 
conclusions. For planar fluids pure point vortices are forbidden quantum-mechanically, 
but onedimensional filaments of vorticity are allowed; similarly, in R3 pure filaments are 
kinematically forbidden, while two-dimensional vortex surfaces, e.g. ribbons and tubes, can 
occur 131. 

However, a major gap remains. For unitary group representations that actually describe 
the quantum mechanics of extended systems, one needs measures on the infiniwdimensional 
configuration spaces that are well-behaved under the action of diffeomorphisms (invariant 
or quasi-invariant, as explained below). This problem must be solved to obtain, for 
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example, fully-quantized non-relativistic strings. Construction of diffeomorphism-invariant 
measures has also been a long-standing challenge in the programme for finding a consistent 
theory of quantized gravity [4]. Very recent advances in this direction have been made by 
Ashtekar and Lewandowski [5]. who describe a faithful, diffeomorphism-invariant measure 
on ‘a compactification of the space of connections modulo gauge transformations. The 
compactification leads to a space that is, however, extremely large and abstract. In this 
letter we propose a new method, based on self-similar random processes, for obtaining 
measures quasi-invariant under diffeomorphisms. We thus have unitary representations for 
systems modelled on more tractable configuration spaces. In describing the infinite gas we 
take a step toward the quantum theory for more general extended objects, such as filaments, 
loops. or ribbons, and we believe our results to be of interest to the programme for the 
quantization of gravity. 

Our most elementary example describes the quantum mechanics of a strictly confined gas 
of point particles. In generalizing it we quite naturally find parametrized families of models, 
where the parameter K relates to correlations among the particles. The quantum systems that 
result from the corresponding unitary representations of Di f f (w) change at the critical value 
K = K~ from a phase of locally finite configurations with zero average density of particles, 
to a condensed phase of configurations with a cluster point. Now classical (non-quantized) 
statistical-mechanical models with phase changes in one dimension include the Kac-Baker 
model of hard spheres on a line, interacting by means of an exponentially decaying potential, 
and a family of king models with long-range interactions described by Dyson (61. At the 
quantum level Lieb er al [7] showed it is not necessary to have long-range interactions for 
phase changes to occur. But the latter are lattice models, as is usual in quantum statistical 
mechanics, In contrast our method provides new, fully-quantized infinite point-particle 
models in the continuum, by directly introducing satisfactory probability measures on an 
infinite-dimensional quantum configuration space. It is not immediately apparent how the 
systems discussed here can be derived from an assumed interaction, though our construction 
provides a good deal of intuition. 

A diffeomorphism 
@ : W + W is simply an invertible mapping, with @ and @-’ smooth. As in [ I ]  we 
include only diffeomorphisms such that @ ( x )  + x (rapidiy, with all derivatives) when 
1x1 -+ W. Then G = D i f f @ a )  is a topological group, whose group law is given by the 
composition of diffeomorphisms: (@1@2)(x)  = (42 o @ J ) ( x )  = @ ~ ( @ I ( X ) ) .  The identity 
element is the diffeomorphism e ( x )  = x .  In general G acts on a space A of (quantum) 
configurations y ,  and in this letter A is the set of infinite sequences of points drawn from 
W. The points in a sequence ( x j )  are the particle positions in a particular configuration of 
a gaseous system. For y = ( x j )  E A, the transformed configuration @ y  = ( y j )  is just the 
sequence yj =$(.q), and [@z 0 @J)Y = @ 2 2 ( $ 1 ~ ) .  

The construction of unitary representations of G requires measures on quantum 
configuration spaces that are either invariant or quasi-invariant for diffeomorphisms. A 
measure p on A is called invnriant for G if for any measurable set A c A and @ E G, 
p ( 4 ( A ) )  = &(A). The weaker condition of qunsi-invariance of 1.1 for G states that if A 
has positive measure, its image $(A) has positive measure for any @ E G, allowing in 
D oeneral p ( A )  + p(q5(A)). Defining the transformed measure p+ by p+(A)  = p(@(A) ) ,  
quasi-invariance is necessary and sufficient for the existence of the Radon-Nikodym (RN) 
derivative (dp@/d@)(y). A quasi-invariant measure p on a configuration space A then 
defines a class of unitary representations V of G in the Hilbert space ‘F1 = L:[A.W) of 

We next sketch the framework in a self-contained way [SI. 
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square-integrable functions q ( y )  taking values in a space W ,  given by 

[ V ( @ ) W Y )  = X d Y ) W @ V )  %Y) (1)  d d@ 
where x+ : W + W ,  and the wave function components in W may describe internal 
degrees of freedom. Here x+ satisfies, for all @ i ,  ch E G, 

X+,(Y)Xh(@lY) = Xdlh(Y) (2)  

almost everywhere in A. Under appropriate technical conditions V ( @ )  defines a continuous 
unitary representation of G in 'H whose self-adjoint generators represent the well known Lie 
algebra Vec t (R)  of vector fields. These self-adjoint generators, interpreted as momentum 
density operators, give a direct physical interpretation to the representation. The choice 
x+(y) 1 is always permitted, while alternate choices of xm are associated with non-trivial 
phase effects and particle statistics. It is the quasi-invariance of /L that allows the square root 
of the derivative to occur as a factor in (I), which makes the representation unitary. The 
construction of such measures when the configuration spaces are (as in our case) infinite 
dimensional is an in-general unsolved problem, though they are needed in the quantum 
theory. 

For measures on A as they are usually constructed in the case of sequence spaces, the 
RN derivative (if it exists) assumes the form of an infinite product: 

Then the issue of quasi-invariance becomes that of the convergence of (3) to a non-zero, 
non-infinite limit. 

One situation that can be understood this way is known to describe the free Bose gas at 
zero temperature, confirming what we have said thus far 191. Consider N identical particles 
uniformly distributed on an interval of length L .  The probability that exactly n particles 
are in a subinterval (a. b) is given by 

N ! ( b - a ) " ( L - b + ~ ) ~ - "  
p d n ;  (a, b)) = n ! ( N  - n)!LN (4) 

Taking the limit as N ,  L + ca, with N I L  -+ g, gives p(n; (a,b)) = (l/n!)g"(b - 
a)" exp[-P(b -a ) ] ,  i.e. the Poisson distribution. From Kolmogorov's theorem, there exists 
a unique Bore1 measure @ on the space A of (unordered) locally finite configurations in 
R, having fixed average density 6. The meaSure j~ is called the Poisson measure, with 
parameter 6. The quasi-invariance of @ under diffeomorphisms, shown by other means in 
[9 ] ,  can be seen from the fact that U, = &(x,), the Jacobian of @ at x,. Since @ becomes 
rapidly trivial at infinity, the finiteness of ,5 implies that (with probability I )  uj + 1 rapidly 
as j + 00. This ensures (3) is positive and finite. The corresponding unitary representations 
of G describe the free Bose gas. 

The measures we now consider are different, in that we permit points to accumulate in 
a bounded region. Quasi-invariance is then a much more delicate question; for example, 
permitting the positions of the particles to distribute non-identically but independently does 
not lead to convergence of the product in (3). instead we shall let the probability distribution 
of the position of the jth particle scale according to the outcomes for the particles previously 
chosen. This establishes a self-similar random process, that mimics an interacting gas of 
particles. 



L478 Letter to the Editor 

For each j ,  we thus let pj be a probability measure on W contingent on the values of 
(XI. ..., xj-I), with dpj(xj) = f,(xj[xt.. . ,. ,x j -~)dxj ;  where fi is a probability density 
function on xj. The joint probability measure for the first k particles is then wt = n:=, pi. 
In this way we obtain a compatible family of probability measures (pk). By Kolmogorov’s 
theorem, these define a unique measure p on A [lo]. The uj in (3) are given by 

and the quasi-invariance of p for diffeomorphisms will follow if we choose the fj so that 
(3) converges (almost everywhere) to a positive, finite limit. 

Next we construct a quasi-invariant measure where (with probability 1) the particles 
accumulate. Choose the first pair of particle positions (XI, x z )  from any non-vanishing 
probability density f t ( x )  = f 2 ( x ) .  Choose the second pair of particle positions from the 
uniform density on the interval [ x l , x ~ ] ;  i.e. 

where x1.,*1 denotes the characteristic function (indicator function) of the interval [a, b]. 
Iterating this process, choose (xzm+l,xyn+z) from the uniform density on [ x h - l .  x k l .  We 
have, in fact, a Markov process. It is easy to show that the measure p is concentrated on 
convergent sequences, whence 

with probability 1, and similarly for uh+2. In the structure of expression (7) for UJ we can 
see clearly how the conditional probability enters: the first factor approaches the reciprocal 
of the Jacobian as the xj approach their limit. The way in which the width of the distribution 
for each pair of points is determined directly by the outcome of choosing the previous pair 
builds a kind of scale invariance or self-similarity into the configurations, which is just 
what is needed for quasi-invariance. Of course, equation (7) is a necessary condition for 
the convergence of the infinite product (3). but it is not sufficient. The quasi-invariance of 
p follows because our conshuction also ensures that the rute of convergence is sufficiently 
rapid. We have, by elementary methods, the sufficient condition 

(with probability 1). The quasi-invariance of p means that a unitary representation of 
the diffeomorphism group, and thus a consistent quantum mechanics, exists for these 
configurations! Physically. this elementary model may be interpreted as describing a strictly 
confined ‘cluster’ formed from infinitely many particles. 

It is interesting that the infinite free Bose gas in one dimension (i.e. Poisson measure with 
parameter p ) ,  can be obtained straightforwardly in this framework as a kind of ‘reciprocal’ 
of the above Markov process. One chooses the positions of successive particles to be outside 
the intervals established by preceding choices, with densities jj decaying exponentially in 
both directions, and with p independent of j in the exponential distributions. 

Now the previous example depends critically on the fact that orientation-preserving 
diffeomorphisms of W respect ‘betweenness’-so that regions of positive measure (with the 
points X%+I and +&+2 falling as they must between xh-1 and x k )  cannot be mapped 
by @ E G into regions of zero measure (with x h + ~  or x k + 2  outside the interval). Next 
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we remove our reliance on this feature, in anticipation of future generalization to higher 
dimensions. To do this, we must use successive probability densities that are nowhere 
vanishing. 

It might be thought that one could proceed by choosing a point xo from a non- 
vanishing density, fixing a standard deviation ao, and .then choosing the x, from normal 
disbibutions with mean xo and shrinking standard deviations U, = 2-Ju0. Such a 
process describes points on a Brownian path, obtained from a Wiener measure. However, 
though x j  converges (with probability 1) to XO,  the measure is not quasi-invariant for 
diffeomorphisms. The convergence of x j  and the condition on aj (independent of the 
outcomes x l r  ..., xj -1 )  are not sufficient to control the behaviour either of the ratio 
[ f ( ~ ( x j ) l ~ ( x l )  ...., ~ ( x j - l ) ) / f ( x j I x l , . . . , x - 1 ) ]  or of the Jacobian & ( x j ) .  Brownian 
paths in R" have (with probability 1) fixed second variation according to the covariance 
matrix of the Brownian motion, while diffeomorphisms of R" act so as to change the 
covariance matrix. Thus we cannot use Wiener measure to achieve the goal. The idea that 
allows a breakthrough is again the self-similarily of the random process. 

To illustrate the role played by self-similarity consider the following model. Again 
choose the first two points xo and X I  from non-vanishing densities fo and f l  respectively. 
Having chosen the points xo, . . . , x,, choose xm+l from a normal distribution; let the mean 
for this normal be XO, and let the standard deviation be U, = K ( x ,  - xol. Here K z 0 is a 
correlation parameter independent of m ,  and small values of K correspond to more tightly 
bound systems. Thus 

We can now show that for small values of K the sequence ( x i )  converges to a finite limit 
(with probability I), and that u j  + 1 sufficiently rapidly to ensure convergence of the 
infinite product (3). where the terms uj in (5) have been defined from (9). Furthermore, 
we can show that the system undergoes a phase transition at a critical value KO of the 
parameter K from the 'rarified' to the 'condensed' phase. More precisely, we can prove 
there exists a KO such that if K c KO sequences converge with probability 1, while if K KO.  
sequences diverge with probability 1; the associated measures on A are quasi-invariant for 
diffeomorphisms. 

From the self-similarity of the random process whereby 
successive densities are constructed, we have that the probability distribution for y ,  = 
(x,  - xo)/(x,-l  - xol, i.e. the distribution of (x ,  - X O )  in standard deviation units, is a 
fixed normal distribution (depending only on K), independent of m. Consider the random 
variable (log Ix, - xol). Since the distributions of the y ,  do not depend on m, we can 
identify (log Ix, - xol) with a random walk on the real line. The step of this random walk 
is 6 = log (ym(  = log (x,  - xg( - log (x,,,-I - xol. and the probability density for 6 is given 

The idea is as follows. 

by 

A standard application of the central limit theorem [ 1 I ]  then implies that if E.$' = 16 f Q )  c 
0, the random walk (log (x,  -xol) drifts to -w (with probability I) ,  which is equivalent to 
the statement that (x,) converges to xg  (with probability 1). On the other side, if E t  > 0, 
then (log Ix, - xol) drifts to +CO and [x,I + CO (with probability 1). The critical value of 
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K occurs when 

i.e. ~ : / 2  = exp y .  where y = 0.5772.. . is the Euler-Mascheroni constant; the definite 
integral in (11) was evaluated using [12,equation 4.355.11. Proving the actual quasi- 
invariance of the measures associated with these Markov processes (needed for the existence 
of the corresponding quantum models) is somewhat more complicated, requiring that a 
condition like (8) be demonstrated. We note that nothing we have done actually depends 
on the use of normal distributions. AI1 that is really necessary is the scaling property and 
the applicability of the central limit theorem. 

In the above we have treated the particles as at the outset distinguishable, in that 
measures are constructed on ordered sequences (x i ) .  Hourever, the physics does not depend 
on the labelling of points that derives from their positions in the sequences. In one space 
dimension it is straightforward to 'sum over permutations' by reconstructing the measures 
in terms of a physical labelling in which, for any configuration, points are indexed according 
to the positions they actually assume on the real line. 

Thus for a whole class of models there is a critical value of U. For sufficiently large K the 
sequence (x,)  diverges with probability 1, and has zero average density (rarefied phase); for 
sufficiently small K it converges with probability I ,  and the particles accumulate (condensed 
phase). We believe that other non-trivial phenomena in quantum statistical mechanics can 
also be modelled by continuous unitary representations of the group G .  

Finally we conjecture that a procedure similar to that given by (9) will work in n 
space dimensions, n z 1, to give measures quasi-invariant for Diff(R"). Here it  will 
be necessary to choose successive points xm+, based on the outcomes for the preceding 
n choices ( x ~ - ~ + , ,  . . . , x m ) ,  using these outcomes to define the covariance matrix of a 
multivariate normal distribution. 

The authors thank J-P Antoine. L Chayes, C J Feltz, I M Gelfand, and D H Sharp for useful 
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Physics Department of the Catholic University of Louvain-la-Neuve, Belgium, the Arnold 
Sommerfeld Institute for Mathematical Physics at the Technical University of Clausthal, 
Germany, and Laboratoire de Physique Thiorique et Mathhatique, Universite Paris 7, 
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